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Fig. 2. Coupling structures between one end of the microstrip line resonator
and (a) a coaxial cable (2-18 GHz), or (b) a waveguide (35 and 50 G&).
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Fig. 3. The measured dispersion of a microstrip line with a Fluorglas sub-
strate. c*=2.5; w/h= 3.04; h= 1.15 mm.
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Fig. 4. The measured dispersion of a microstrip line with a Rexolite sub-
strate. C*=2.62; w/h= 2.82; h= 1.57 mm.

resonator is made of a microstrip line shorted at both ends by

conductor plates. A is measured as the resonator length divided

by the number of standing waves between the conductor plates.

X ~ is the wave velocity divided by the frequency reading on the

microwave counter (2– 18 GHz) or wave meter (35 and 50 GHz).

The ratio, kO/A, equals to /3/~0. Fig. 2 illustrates two types of
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Fig. 5. The measured dispersion of a microstrip line with a Alumina sub-
strate. C*= 9.0 w/h =0.867; h =0.97 mm.

and a coaxial cable (2– 18 GHz) or a waveguide (35 and 50 GHz)

in the experimental setup.

Figs. 3,4, and 5 show the results of measurements by using the

above experimental setup for three substrates: Fluorglas ( C* = 2.5),

Rexolite (c*= 2.62), and Alumina (c*= 9.0). Reasonable agree-

ment between the formula and experimental results in these

figures indicates the practicality of the approximate formula.
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A bstraet— A generaf formula for calculation of the characteristic imped-

coupling structures between one end of the microwave resonator
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ante of four conductor transmission line in a rectangular shield is deri~ed.

A number of coupled and single strip transmission lines are considered by

simplifying the general formula. Numerical results for a line in a square

shield are presented graphically.
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I. INTRODUCTION

The purpose of this correspondence is to present a general

formula for characteristic impedances of a transmission line

consisting of four rectangular bars symmetrically situated in a

metaf shield. The results presented below are obtained by using

the self-consistent field method (SCFM) [1], [2]. This method is

based on the assumption that the investigated transmission line

supports TEM waves and the electromagnetic problem reduces to

solving the Poisson equation AA = – pJ, for the z-component of

the vector potential A = ZOA=(X, y). The unknown current density

J= ZOJZ(x, y) on the conductors surfaces is determined by the

SCFM in accordance with the boundary condition n XH, =J,

where n is a unit vector normaf to the k-surface of the bar ~d H1

is the tangential magnetic field near this surface, defined by

relation H= j v XA. The characteristic impedance of the line is

calculated from the expression Z= L/@i, where L= 1j12\A .Jds

is the inductance per unit length of the investigated line, c = c~C,

and p= p ~p, are constants of the medium and 1 is the current on

the one of line’s conductors.

II. THEORY

The investigated four conductor transmission line is shown in

Fig. 1. As it is known [3], there are four different modes of TEM

excitation between the conductors of the line— see Fig,. 2. When

the plane x= O (or y= O), is equivalent to an electri~ wall the

so-called odd-mode of excitation is obtained, and even-mode,

when the corresponding plane is equal to a magnetic wall. The

planes x= O; y= O bisect the cross section of the line into four

images “cells.” So, it follows that the characteristic impedance of

any mode of excitation can be determined for a single cell. It is

convenient to denote the different modes of excitation with two

indexes—e (even) and o (odd). The first index characterizes the

excitation of the horizontal conductors (with respect to x= O),

and the second— of the vertical conductors (with respect to

y= O). For example, Z’” denotes the characteristic impedance of

the four conductor line with even– odd mode of ex~itation, as

shown in Fig. 2(a).

Taking into consideration the boundary conditions on the

plane x= O,y = O and on the metal shield, a general expression for

the z-component of the potential can be written in the form

A=(x, y)=&

{//
hb

Jz(x’, y’)
00

“[
sin n n.x’/b 1[0sin m ry ‘/h 1}

o
cos(n– l/2)9rx’/b , cos(m–1/2)~y ’/h ‘X’dy’

e

(1)

where the current density is defined by

1
J1(x)8(y–d)

}
J2(x)8(y–d–t) ‘ ‘< X<S+W

Jz(x, y)=
J3(y)8(x-s)

}

(2)

J4(y)c$(x-s-w) ‘
d<y<d+t.

1-----A+
Fig. 1 Four-conductor transmission line in a rectangular shield.

In accordance with the SCFM pro<edure the functions J~(l)

are substituted by their average values Jk = 1/lk /Jk( 1) dl. Further,

performing the seq~ence of calculations: (~k = 1) ~A=(x, y) ~

Ht( x, y) a .lk( 1) +Jk -..., the final result for the average den-

sities is

where p is number of iteration, ~,, = 1, and
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Fig. 2. Excitation of the conductors. (a) Even-odd mode. (b) Odd-odd mode.
(c) Odd- even mode. (d) Even-even mode.
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In the above expressions the dimensions of the line are normal-

ized with respect to the height of the shield h as follows: B= b/h,

S=s/h, D =d/h, W= w/h, and T= t/h, For simplicity, the

indexes e and o are omitted. The combination m and upper sign

corresponds to odd– odd mode of excitation, m and lower sign to

even–odd mode, m – 1/2 and upper sign to odd–even mode and

m — 1/2 and lower sign to even-even mode.

The substitution of the potential (1) into the integral for the

inductance L gives then the following expression for the char-

acteristic impedance calculation:

b

t,,, ,,, / /7

c
Fig. 3, Transmission lrnes between parallel plates. (a) Four conductor line.

(b) Narrow-side coupled strip transmission line. (c) Broad-side coupled strip
transmission line.

z 44m= [
l+e–(:-

1[
,/2)2$7(s+ w) 1 –e–(;-,,2)2r(E–S– W)

1

III. SPECIAL CASES

The obtain formulas (3) and (5) can be used also for the case

when the side walls of the shield are displaced to infinity (B ~

m)— see Fig. 3(a). For this case in (3) and (5) the exponents

containing the factor B are equal to zero. If the substitution

Equation (4) is a stationzuy function with respect to the c~rrent

distrib~tion J,(x, y). Therefore, the substitution Jk( 1) ~Jk will

lead to a small error for Z—less than 2-3 percent.

Finally, the general design formula for the characteristic im-

pedances of the investigated four-conductor line is

where the matrix elements ZZ,~ = Zj,~ are expressed as

z Ilm =z,2m=z22m=y,1m

z 13m =z23m=y13m; z,4m = z~~m =y14m

[ 1[
Z33m = 1 xe ‘f~-l/2)2ns 1 –e–(~-Ip)2r(B-S)

1

z
[ 1[

‘(;- I/2)7r14’ 1 ~e–(;-I/2)2~~ 1 —e–(LI/2)27XB--- ~)34m = e
1

(5)

follows:

B-i m is taken into consideration, the narrow-side coupled strip

transmission line shown in Fig. 3(b) can be characterized by the

impedances Z’” and Z“” [4], The broad-side coupled strip trans-

mission line shown in Fig. 3(c) is characterized by the imped-

ances Z“e and Z“” in the case when both B and S tend to infinity

[5].

The expression for the characteristic impedance of the odd-odd

mode of excitation Z“” corresponds to the rectangular coaxial

line (see Fig. 4(a), investigated earlier [1]. A result for the imped-

ance of the trough line— Fig. 4(b), can be obtained if in the

expression for Z“” the factor B is set to infinity. When both

dimensions B and S tend to infinity, the formula for Z“” sim-

plifies to the expression for the characteristic impedance of the

unbalanced strip transmission line [6],

IV. NUMERICAL RESULTS

The calculation of the characteristic impedances is made by

computer. The requirement IZP —ZP+ ~I/ZP <10 – 3 serves as a

1 criterion for determination the number of iterations o in (3). The. ..-
numerical results for the characteristic impedances Z’”, 2°2, Z“p



614 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 6, JUNE 1981

q,.,>!,.,,....!..<!. . . .

8 w

\
*

k \\\\\’ +
9.<7./<. //</,<//./,/</

.:=

w
-c -c

?J
-4

% -w

a b c

Fig. 4. Single transmission lines. (a) Rectangular coaxial line, (b) Trough line.
(c) Unbalanced strip line.
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and Z’e of the four-conductor line with a square shield (B= 1),

are presented graphically in Fig. 5 — for the case 2s + w = b,

2d+ t=h and in Fig. 6— when s/h =0.2, d/h =0.2. The compari-

son of data for the value of the impedances Z=” and 2°” from

Fig. 5 with the corresponding results calculated from Getsinger’s

graphs [7] gives agreement within 2-3 percent.

The numerical data for the pair of the characteristic imped-

ances 2’0, 2°0 and 20’, 2°0 can be used for the design of

coupled transmission lines in square shield [8]. The graphs for the

other lines shown in Figs. 3 and 4 are presented in papers [4]–[6].
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A bstract— For many wavegaides, only approximate solutions for the
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the orthogonality property of the exact modes can be preserved. This

problem is addressed in the present paper. A fairly general method of
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